Answer:
In a chemical reaction, only the atoms present in the reactants can end up in the products. No new atoms are created, and no atoms are destroyed. In a chemical reaction, reactants contact each other, bonds between atoms in the reactants are broken, and atoms rearrange and form new bonds to make the products.
Explanation:
Answer:
D) The equilibrium lies far to the left
Explanation:
According to the law of mass action, the equilibrium constant K for the reaction at 373K can be calculated as follows:
K =
= 2.19×10^{-10}
([X] means = concentration of X)
This means that in the equilibrium the concentration of the reactant (that is in the denominator) will be much higher (around 10^{10} fold) than the concentrations of the products (that are in the numerator), and this means that the equilibrium lies far to the left (to the reactants side) as very small amount of product is being formed.
Answer:
Explanation:
From the given information:
Camphor may be reduced as readily in the presence of sodium borohydride(NaHB4). The resulting compound which is stereoselective requires 1 mole of sodium borohydride (NaHB4) to reduce 1 mole of camphor in this reaction. The reaction is shown below.
Through the reduction process of camphor, the reducing agent can reach the carbonyl face with a one-carbon linkage. The product stereoisomer is known as borneol.
If the molecular weight of camphor = 152.24 g/mol
and it mass = 200 mg
The its no of moles = 200 mg/ 152.24 g/mol
= 1.3137 mmol
Now the amount of the required mmol for NaBH4 to be consumed in the reaction = 5.2 × 1.3137 mmol
= 6.831 mmol
since the molar mass of NaBH4 = 37.83 g/mol
Then, using the same formula:
No of moles = mass/molar mass
mass = No of moles × molar mass
mass = 6.831 mmol × 37.83 g/mol
mass of NaBH4 used = 258.42 mg
The earths moon is most like going to differ in size or even color