Answer:

Explanation:
We usually approximate the density of water to about
at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about
. For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at
, and the density at this point is exactly
.
The answer is C. Life
Hope this helps! :)
Answer:
Option A (9.0) is the correct alternative.
Explanation:
The given values are:
Molarity,
= 1.5 M
Volume,
= 6000 mL
or,
= 6 L
As we know,
⇒ 
or,
⇒ 
By putting the values, we get


HCl + NaOH ---> NaCl + H20
If you follow guidance from other questions I have already answered for you, you will see that the above equation is balanced as it is.
In the complete combustion of 1.60 moles of benzene, C6H6, 12 moles of oxygen, O2, is consumed.
Combustion is defined as the process of burning something. In chemistry, combustion refers to the chemical process between a fuel and an oxidant, usually oxygen to produce heat and light in the form of flame.
In a complete combustion, oxygen is sufficient to react with any hydrocarbons to produce carbon dioxide and water.
Balancing the combustion reaction of benzene, we have:
2C6H6 + 15 O2 = 12CO2 + 6H2O
Based on the balanced combustion reaction above, 2 moles of benzene requires 15 moles of oxygen to have a complete combustion.
If we have 1.60 moles C6H6,
moles O2 = mole ratio x mole of benzene
moles O2 = (15 moles O2/2 moles C6H6) x 1.60 moles C6H6
moles O2 = 12
To learn more about combustion: brainly.com/question/9913173
#SPJ4