The final temperature of the mixture : 21.1° C
<h3>Further explanation </h3>
The law of conservation of energy can be applied to heat changes, i.e. the heat received / absorbed is the same as the heat released
Q in(gained) = Q out(lost)
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Q ethanol=Q water
mass ethanol=

mass water =

then the heat transfer :

Answer:
Michaelis constant is known as km which is the substrate concentration that encourages the compound to work at half maximum velocity represented by Vmax/2. Michaelis constant is inversely related to the substrate and the affinity of the enzyme.
Induced fit model: The premise of the purported induced fit hypothesis, which expresses that the attachment or association of a substrate or some other atom to an enzyme causes an adjustment to the enzyme in order to fit or restrain its activity.
In substrate, analog Km or Michaelis constant will be high as the substrate will stay because of analogs inhibit activity.
In the transitional state, analog Km will be in the middle of the substrate and product analogs. Progress state analogs are synthetic mixes with a structure catalyzed reaction that looks like the progressing condition of a substrate atom in a compound enzyme.
In item simple thus Km is the least.
0.0013 M = product ananlog,
0.025 M=Transition state, and
0.0045 M = Substrate analog
Answer:
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Explanation:

1 Ton = 907185 grams
Mass of copper oxide = 1.0 Ton = 907185 grams
Moles of copper oxide =
According to reaction, 2 moles of copper oxide reacts with 1 mole of carbon.
Then 11403.95 moles of copper oxide will react with:
of carbon
Mass of 5,701.98 moles of carbon:

Mass of coke = x
Mass of carbon = 68,423.75 g
Percentage of carbon in coke = 95%


The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Jdjdjxjjznbxyhzkaishsbzn
Kzksjdjjdidiididjdjdjj
Sksk