Answer: park with the green green yellow green orange green green brown green orange orange green orange yellow orange orange brown orange orange yellow orange
Explanation:
Answer:
108 kPa
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
Data:
p₁ = ?; V₁ = 34.3 L; T₁ = 31.5 °C
p₂ = 122.2 kPa; V₂ = 29.2 L; T₂ = 21.0 °C
Calculations:
(a) Convert temperatures to <em>kelvins
</em>
T₁ = (31.5 + 273.15) K = 304.65 K
T₂ = (21.0 + 273.15) K = 294.15 K
(b) Calculate the <em>pressure
</em>
p₁ = 122.2 kPa × (29.2/34.3) × (304.65/294.15)
= 122.2 kPa × 0.8542 × 1.0357
= 108 kPa
If the ending substance has changed its properties. For example if iron rusts it is a chemical change because it is no longer the same as before it is now just rust. A physical change only changes the appearance but burning something or changing it's chemical properties is a chemical change.
Answer: (a) There are 0.428 moles present in 12 g of
molecule.
(b) There are 2 moles present in
particles of oxygen.
Explanation:
(a). The mass of nitrogen molecule is given as 12 g.
As the molar mass of
is 28 g/mol so its number of moles are calculated as follows.

So, there are 0.428 moles present in 12 g of
molecule.
(b). According to the mole concept, 1 mole of every substance contains
atoms.
Therefore, moles present in
particles are calculated as follows.

So, there are 2 moles present in
particles of oxygen.