Answer:
<h2>0.75 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.75 g/mL</h3>
Hope this helps you
Answer:
2.7475 mol≈2.75 mol
Explanation:
M(HCl) = 1.0 + 35.5 = 36.6 g/mol
100.56 g HCl *(1 mol HCl/36.6 g HCl)≈ 2.7475 mol≈2.75 mol
Answer:

Explanation:
Given that:

From equation (3) , multiplying (-1) with equation (3) and interchanging reactant with the product side; we have:

Multiplying (2) with equation (4) ; we have:

From equation (1) ; multiplying (-1) with equation (1); we have:

From equation (2); multiplying (3) with equation (2); we have:

Now; Adding up equation (5), (6) & (7) ; we get:



<u> </u>

<u> </u>
<u />
(According to Hess Law)


Answer:
Mass of solute = 0.0036 g
Explanation:
Given data:
Concentration of Cl⁻ = 15.0 ppm
Volume of water = 240 mL
Mass of Cl⁻ present = ?
Solution:
1 mL = 1 g
240 mL = 240 g
Formula:
ppm = mass of solute / mass of sample ×1,000,000
by putting values,
15.0 ppm = (mass of solute / 240 g) ×1,000,000
Mass of solute = 15.0 ppm × 240 g / 1,000,000
Mass of solute = 0.0036 g
Answer:
The pH value of the mixture will be 7.00
Explanation:
Mono and disodium hydrogen phosphate mixture act as a buffer to maintain pH value around 7. Henderson–Hasselbalch equation is used to determine the pH value of a buffer mixture, which is mathematically expressed as,
![pH=pK_{a} + log(\frac{[Base]}{[Acid]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%29)
According to the given conditions, the equation will become as follow
![pH=pK_{a} + log(\frac{[Na_{2}HPO_{4} ]}{[NaH_{2}PO_{4}]})](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%20%2B%20log%28%5Cfrac%7B%5BNa_%7B2%7DHPO_%7B4%7D%20%5D%7D%7B%5BNaH_%7B2%7DPO_%7B4%7D%5D%7D%29)
The base and acid are assigned by observing the pKa values of both the compounds; smaller value means more acidic. NaH₂PO₄ has a pKa value of 6.86, while Na₂HPO₄ has a pKa value of 12.32 (not given, but it's a constant). Another more easy way is to the count the acidic hydrogen in the molecular formula; the compound with more acidic hydrogens will be assigned acidic and vice versa.
Placing all the given data we obtain,

