Answer:
The pressure after passing the valve is 23,8 [Kpa] ( 0,234 atm) and the pressure drop is about 1,53 [Kpa]
Explanation:
We need to use the formula of bernoulli, in the attached image we can see the fluid throw the pipe, we also can calculate the velocity inside the pipe using the flow rate and the cross sectional area.
For this case, we don't use the elevation difference and therefore those terms can be cancelled.
When the area has reduced the velocity of the fluid is increased but there is a drop pressure through the valve.
This process shows alpha decay so X represents an alpha particle. The characteristic of alpha decay is that the mass number stays constant while the proton number increases.
Answer:
(a) f= 622.79 Hz
(b) f= 578.82 Hz
Explanation:
Given Data
Frequency= 600 Hz
Distance=1.0 m
n=120 rpm
Temperature =20 degree
Before solve this problem we need to find The sound generator moves on a circular with tangential velocity
So
Speed of sound is given by
c = √(γ·R·T/M)
............in an ideal gas
where γ heat capacity ratio
R universal gas constant
T absolute temperature
M molar mass
The speed of sound at 20°C is
c = √(1.40 ×8.314472J/molK ×293.15K / 0.0289645kg/mol)
c= 343.24m/s
The sound moves on a circular with tangential velocity
vt = ω·r.................where
ω=2·π·n
vt= 2·π·n·r
vt= 2·π · 120min⁻¹ · 1m
vt= 753.6 m/min
convert m/min to m/sec
vt= 12.56 m/s
Part A
For maximum frequency is observed
v = vt
f = f₀/(1 - vt/c )
f= 600Hz / (1 - (12.56m/s / 343.24m/s) )
f= 622.789 Hz
Part B
For minimum frequency is observed
v = -vt
f = f₀/(1 + vt/c )
f= 600Hz / (1 + (12.56m/s / 343.24m/s) )
f= 578.82 Hz
Answer:
An organized set of investigation procedures is called a scientific method.
There are five steps of the scientific method for an experiment.
Step 1: Make a question
Step 2: Do some research for that question.
Step 3: Hypothesis ( a guess what might happen during the experiment)
Step 4: Test and collect data
Step 5: Conclusion ( what you learned from the experiment)