The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
<h3>What is the time after being ejected is the boulder moving at a speed 20.7 m/s upward?</h3>
The motion of the boulder is a uniformly accelerated motion, with constant acceleration
a = g = -9.8 
downward (acceleration due to gravity).
By using Suvat equation:
v = u + at
where: v is the velocity at time t
u = 40.0 m/s is the initial velocity
a = g = -9.8
is the acceleration
To find the time t at which the velocity is v = 20.7 m/s
Therefore,

The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
The complete question is:
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. At what time after being ejected is the boulder moving at 20.7 m/s upward?
To learn more about uniformly accelerated motion refer to:
brainly.com/question/14669575
#SPJ4
Answer:
Yes
Explanation:
If the acceleration has an opposite direction to the velocity of the car, this means that it is opposed to is motion. Therefore, it is called deceleration, since the car's velocity will decrease until it stops and then will start it moving towards the west.
In nomine patris, et filii, et spiritus sancti.