Difference exists mainly in the label for x axis.
Explanation:
- Shapes of waveform and vibration graphs are same.
- Vibration graphs shows the particle at a single location in the path of the wave when time passes.
- Waveform graphs shows the particle at multiple locations at a single moment of time.
<span>5.98 x 10^-2 ohms.
Resistance is defined as:
R = rl/A
where
R = resistance in ohms
r = resistivity (given as 1.59x10^-8)
l = length of wire.
A = Cross sectional area of wire.
So plugging into the formula, the known values, including the area of a circle being pi*r^2, gives:
R = 1.59x10^-8 * 3.00 / (pi * (5.04 x 10^-4)^2)
R = (4.77 x 10^-8) / (pi * 2.54016 x 10 ^-7)
R = (4.77 x 10^-8) / (7.98015 x 10^-7)
R = 5.98 x 10^-2 ohms
So that wire has a resistance of 5.98 x 10^-2 ohms.</span>
Answer:
0.82 mm
Explanation:
The formula for calculation an
bright fringe from the central maxima is given as:

so for the distance of the second-order fringe when wavelength
= 745-nm can be calculated as:

where;
n = 2
= 745-nm
D = 1.0 m
d = 0.54 mm
substituting the parameters in the above equation; we have:

= 0.00276 m
= 2.76 × 10 ⁻³ m
The distance of the second order fringe when the wavelength
= 660-nm is as follows:

= 1.94 × 10 ⁻³ m
So, the distance apart the two fringe can now be calculated as:

= 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m
= 10 ⁻³ (2.76 - 1.94)
= 10 ⁻³ (0.82)
= 0.82 × 10 ⁻³ m
= 0.82 × 10 ⁻³ m 
= 0.82 mm
Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:
