1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aivan3 [116]
3 years ago
15

The kinetic energy of a moving object is E=12mv2. A 61 kg runner is moving at 10kmh. However, her speedometer is only accurate t

o within 0.1kmh. What is the potential error in her calculated kinetic energy, as a result of the imprecision in the measurement of her velocity?
Physics
1 answer:
jek_recluse [69]3 years ago
4 0

Answer:

e=3367.2J

%e=1.43%

Explanation:

From the exercise we know two information. The real speed and the experimental measured by the speedometer

v_{r}=10km/h=2.77m/s

Since the speedometer is only accurate to within 0.1km/h the experimental speed is

v_{e}=10km/h-0.1km/h=9.9km/h=2.75m/s

Knowing that we can calculate Kinetic energy for the real and experimental speed

E_{r}=\frac{1}{2}mv^2=\frac{1}{2}(61000g)(2.77m/s)^2=234023J

E_{e}=\frac{1}{2}mv^2=\frac{1}{2}(61000g)(2.75m/s)^2=230656J

Now, the potential error in her calculated kinetic energy is:

e=E_{r}-E_{e}=(234023-230656)J=3367.2J

%e=\frac{E_{r}-E_{e}}{E_{r}}x100=\frac{(234023-230656)J}{234023J}x100=1.43%

You might be interested in
How long must a flute be in order to have a fundamental frequency of 262 Hz (this frequency corresponds to middle C on the evenl
spin [16.1K]

Answer:

L=0.654 m

Explanation:

<u>Concepts and Principles  </u>

1- The speed of sound in air is expressed as a function of the temperature of air as follows:  

 v=(331 m/s)√(1+T_C/273°C)                        (1)

where 331 m/s is the speed of sound in air at temperature 0°C and Tc is the temperature of air in Celsius.  

<u>Standing Wave Patterns in Pipes:  </u>

A pipe open at both ends can have standing wave patterns with resonant frequencies:  

f=v/λ=nv/2L                     n=1,2,3.........

where v is the speed of sound in air.  

<u>Given Data </u>

f_1 (fundamental frequency of the flute) = 262 Hz

T (temperature of the air) = 20°C  

The flute is open at both ends.  

<u>Required Data </u>

We are asked to determine the length of the tube.  

<u>Solution</u><u>  </u>

The speed of sound in air at temperature T = 20°C is found from Equation (1):

 v=(331 m/s)√(1+T_C/273°C)  

 =342.91 m/s

The fundamental frequency of the flute is found by substituting n = 1 into Equation (2):  

f=v/2L

Solve for L:  

L=v/2f_1

L=0.654 m

7 0
3 years ago
If the change in kinetic energy of a tennis ball hit by the racket
Marrrta [24]

Answer: .36 m

Explanation:

5 0
3 years ago
A block on a horizontal frictionless plane is attached to a spring, as shown below. The block oscillates along the x-axis with s
AleksandrR [38]

The question is about unclear since no picture provided. But from the question, it could be guessed that the box is moving back and forth on the frictionless plane at the amplitude of A in simple harmonic motion.

Answer:

D. At x=0, it's acceleration is at a maximum

Explanation:

As the box move forward, it reaches point A and than move backward. Theoretically, the box will move backwards, through its origin, to point -A and then going forward.

Point A is the maximum displacement of the box in this case. At this point, the box instantaneously stop to go backward. Therefore the velocity at that moment is zero.

From point -A, the box travel forward and keep building up speed due to the release in potential energy of the spring. And at point x=0, the velocity become maximum. After point x=0, the velocity of the box slows down due to the conversion of kinetic energy to potential energy of the spring. And as it reaches point A, it reaches zero velocity.

The same can be said as the box travels backward from point A to -A

8 0
4 years ago
Which, if any, of the heat engines violate(s) the second law of thermodynamics?
Anuta_ua [19.1K]
The second law states that the total entropy can never decrese over time for an isolated system
3 0
3 years ago
A 6.00 A current runs through a 12-gauge copper wire (diameter 2.05 mm) and through a light bulb. Copper has 8.5×1028 free elect
navik [9.2K]

Answer:

Explanation:

Current, I = 6 A

diameter of wire, d = 2.05 mm

number of electrons per unit volume, n = 8.5 x 10^28

If the diameter is doubled,

The resistance of the wire is inversely proportional to the square of the diameter of the wire, so the resistance is  one forth an the current is directly proportional to the diameter of the wire so the current is four times the initial value.  

8 0
3 years ago
Other questions:
  • A 2.0-kilogram mass is located 3.0 meters above
    14·2 answers
  • When water molecules are disappearing into the air, there is a net _______?
    12·1 answer
  • Which evidence did Ottowa scientists collect in researching PCB concentrations in Alaska?
    9·2 answers
  • How long does it take to go 3000 miles at the speed of light?
    10·1 answer
  • Which of these is largest? A. asteroids B. comets C. meteoroids D. planets
    5·2 answers
  • SPEED AND VELOCITY<br> Plz someone help
    12·1 answer
  • How can spectroscopy and infrared technology be useful in space? (5 points)
    7·1 answer
  • A trout jumps, producing waves on the surface of a 0.8-mdeep mountain stream. If it is observed that the waves do not travel ups
    11·1 answer
  • Which layer is the igneous rock type?
    7·2 answers
  • Which factors describe the motion of an object?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!