Answer:
The correct option is a behavioural models of the the to-be system.
Explanation:
As the Use case analysis method generates the analysis classes list such that the classes are capable of performing the behavior needed to make the system function successfully. From these analysis classes list the responsibilities of each class are defined.
As the list is derived from the behavioural models of the system, thus option a is the correct option.
Answer:
Explanation:
The equation fo potential energy is PE = mgh, where m is the mass of the ball, g is the pull of gravity (constant at 9.8), and h is the max height of the ball. What we do not have here is that height. We need to first solve for it using one-dimensional equations. What we have to know above all else, is that the final velocity of an object at its max height is always 0. That allows us to use the equation
where vf is the final velocity and v0 is the initial velocity. We will find out how long it takes for the object to reach that max height first and then use that time to find out what that max height is. Baby steps here...
0 = 21.5 + (-9.8)t and
-21.5 = -9.8t so
t = 2.19 seconds (Keep in mind that if I used the rules correctly for sig fig's, the answer you SHOULD get is not one shown, so I had to adjust the sig fig's and break the rules. But you know what they say about rules...)
Now we will use that time to find out the max height of the object in the equation
Δx =
and filling in:
Δx =
which simplifies down a bit to
Δx = 47.1 - 23.5 so
Δx = 23.6 meters.
Now we can plug that in to the PE equation to find the PE of the object:
PE = (.19)(9.8)(23.6) so
PE = 43.9 J
Explanation:
Hey, there!
The liquid pressure varies with depth because liquid pressure is directly proportional to the depth of liquid from the free surface of the liquid. so, more the depth more the pressure and less the depth less the pressure.
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
A POSTAL PACKAGE IS PUSHED BY A HORIZONTAL TABLE WITH A FORCE F = 40N. PACKAGE MOVES ON A DISTANCE OF 1.5M WHICH MECHANICAL WORK PERFORMS THIS FORCE
PT TEST
Answer: GLOMERULUS
Explanation:
The specialized capillary bed responsible for the pressure that drives filtration is the
GLOMERULUS.
The kidney is an organ responsible for the excretion of nitrogenous wastes from the human body and osmoregulation of the blood and body fluids. The structure which is responsible for formation of urine is the nephron( kidney tubule). The GLOMERULUS are found within the Bowman's capsule of the nephrons. It is made up of specialised bundle of capillary beds which are the only capillary beds that are not surrounded by interstitial fluid in the body. In the glomerulus, blood pressure is high because an arteriole enters and exists the capillary beds which is responsible for the pressure that drives filtration.