That would be an asteroid
"(1) a satellite moving around Earth in a circular <span>orbit" is the only option from the list that describes an object in equilibrium, since velocity and gravity are working together to keep the orbit constant. </span>
Answer:
.409 N
Explanation:
For this to balance, the moments around the fulcrum must sum to zero.
On the left you have .21 ( is that down? I will assume it is)
Counterclockwise moments :
.21 * 40 + 1.0 * 20
Clockwise moments :
.5 * 20 + F * 45
these moments must equal each other
.21*40 + 1 *20 = .5 * 20 + F * 45
F = .409 N
Answer: 30.34m/s
Explanation:
The sum of forces in the y direction 0 = N cos 28 - μN sin28 - mg
Sum of forces in the x direction
mv²/r = N sin 28 + μN cos 28
mv²/r = N(sin 28 + μcos 28)
Thus,
mv²/r = mg [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/r = g [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]
v²/36 = 9.8 [(0.4695 + 0.87*0.8829) - (0.8829 - 0.87*0.4695)]
v²/36 = 9.8 [(0.4695 + 0.7681) / (0.8829 - 0.4085)]
v²/36 = 9.8 (1.2376/0.4744)
v²/36 = 9.8 * 2.6088
v²/36 = 25.57
v² = 920.52
v = 30.34m/s
Answer:
20m/second
Explanation:
The reason the answer is 20m/second is because to find the speed of the ball in this question you have to divide the distance over the time giving you the result of 20m/second