The total circuit current at the resonant frequency is 0.61 amps
What is a LC Circuit?
- A capacitor and an inductor, denoted by the letters "C" and "L," respectively, make up an LC circuit, also referred to as a tank circuit, a tuned circuit, or a resonant circuit.
- These circuits are used to create signals at particular frequencies or to receive signals from more complicated signals at particular frequencies.
Q =15 = (wL)/R
wL = 30 ohms = Xl
R = 2 ohms
Zs = R + jXl = 2 +j30 ohms where Zs is the series LR impedance
| Zs | = 30.07 <86.2° ohms
Xc = 1/(wC) = 30 ohms
The impedance of the LC circuit is found from:
Zp = (Zs)(-jXc)/( Zs -jXc)
Zp = (2+j30)(-j30)/(2 + j30-j30) = (900 -j60)2 = 450 -j30 = 451 < -3.81°
I capacitor = 277/-j30 = j9.23 amps
I Zs = 277/(2 +j30) = (554 - j8,310)/904 = 0.61 - j9.19 amps
I net = I cap + I Zs = 0.61 + j0.04 amps = 0.61 < 3.75° amps
Hence, the total circuit current at the resonant frequency is 0.61 amps
To learn more about LC Circuit from the given link
brainly.com/question/29383434
#SPJ4
Sometimes if you have the word per, you need to multiply. In this problem, they are asking you to find the amount of meters a snail can travel per minute.They are giving you the amount of minutes, so in this case you multiply 15 times 0.30. The answer is 4.5 meters.
Answer:
B. An Iron Bar place in a room becomes cooler than its surroundings.
C2H5OH (l) + 3 O2 (g) = 2 CO2 (g)+ 3 H2O (l/g)
According to Newton's second Law of motion, if the mass of an object is 10 kg and the force is 10 newtons, then the acceleration is 1m/s².
<h3>How to calculate acceleration?</h3>
The acceleration of a moving body can be calculated by dividing the force of the body by its mass.
According to this question, the mass of an object is 10 kg and the force is 10 newtons, then the acceleration can be calculated as follows:
acceleration = 10N ÷ 10kg
acceleration = 1m/s²
Therefore, according to Newton's second Law of motion, if the mass of an object is 10 kg and the force is 10 newtons, then the acceleration is 1m/s².
Learn more about acceleration at: brainly.com/question/12550364
#SPJ1