We want to find how much momentum the dumbbell has at the moment it strikes the floor. Let's use this kinematics equation:
Vf² = Vi² + 2ad
Vf is the final velocity of the dumbbell, Vi is its initial velocity, a is its acceleration, and d is the height of its fall.
Given values:
Vi = 0m/s (dumbbell starts falling from rest)
a = 10m/s² (we'll treat downward motion as positive, this doesn't affect the result as long as we keep this in mind)
d = 80×10⁻²m
Plug in the values and solve for Vf:
Vf² = 2(10)(80×10⁻²)
Vf = ±4m/s
Reject the negative root.
Vf = 4m/s
The momentum of the dumbbell is given by:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
m = 10kg
v = 4m/s (from previous calculation)
Plug in the values and solve for p:
p = 10(4)
p = 40kg×m/s
Answer:
A or B(the answers)
Explanation:
they seem like the most right
Answer:
option A
Explanation:
The correct answer is option A
The binary star system is the system in which two stars are continuously orbiting each other,
In the eclipsing binary system, two stars revolve about there center of mass and in this system one one-star eclipse another star.
Spectroscopic binary stars are found from the observation of radial velocity and the brighter member of such binary can be seen to have continuously changed the wavelength and periodic velocity.
When the pairs of stars appear to change position in the sky then it is known as visual binary.