Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
Answer:

Explanation:
Given:
- mass of the object on a horizontal surface,

- coefficient of static friction,

- coefficient of kinetic friction,

- horizontal force on the object,

<u>Now the value of limiting frictional force offered by the contact surface tending to have a relative motion under the effect of force:</u>

where:
normal force of reaction acting on the body= weight of the body


As we know that the frictional force acting on the body is always in the opposite direction:
So, the frictional force will not be at its maximum and will be equal in magnitude to the applied external force and hence the body will not move.
so, the frictional force will be:

D=at²
441m=(5*9.81m/s²)(t²)
t²=441/(5*9.81)
t≈√8.99
t≈3 sec
Answer:

the force you applied to your car =1350N