The answer is B ! As in light bulb tungsten is working as resistor !
Base in your questions that ask what cause the bright lines seen in the emission spectrum and i think the best answer to that is the H2 gas is used when protons was heated so the electron absorb all the photons and get exited and resulted by given of a light.
Answer:
Explanation:
Let v is the launch speed of the plastic ball and the angle of projection is θ.
So, in horizontal direction
v Cosθ x t = 4.8 .... (1)
In th evertical direction
1.4 = v Sin θ x t - 0.5 gt² .... (2)
As , v Sin θ x t = 3.8 .... (3) , put in equation (2)
1.4 = 3.8 - 4.9 t²
t = 0.7 s
Put in (1) and (3)
v Cosθ x 0.7 = 4.8
v Cosθ = 6.86
and v Sinθ x 0.7 = 3.8
v Sinθ = 5.43
Now

v = 8.75 m/s
A pipe's length is equal to 1⁄2 of the wavelength of the sound waves produced by a tuning fork vibrating over one end of the pipe that's open to the air at both ends.
Answer:
Explanation:
Image of distant object will be made at far point or at 52.5 so
object distance u = infinity
image distance v = - 52.5 cm
focal length required = f
Lens formula
1 / v - 1 / u = 1 / f
1 / - 52.5 - 0 = 1 / f
f = -52.5 cm
= -.525 m
Power P = 1 / f = - 1 / .525
= - 1.90
now , for eye with glass we shall find new near point .
v = ?
u = - 17.2 cm
f = - 52.5 cm
1 / v - 1 / u = 1 / f
1 / v + 1 / 17.2 = - 1 / 52.5
1 / v = - 1 / 17.2 - 1 / 52.5
= - .05813 - .019
= - .07713
u = - 12.96 cm
so new near point will be 12.96 cm