Answer:
Here's what I get
Explanation:
Ethylamine has an N atom with a lone pair of electrons.
It can act as a Brønsted-Lowry base and accept a proton from water and become an ethylammonium ion.
The structure of the ion is shown below (there is a C atom at each of the four-way bond intersections).
<span>The energy (E) per photon is expressed by Planck's equation: E = hf, where f is
the frequency and h is Planck's constant, experimentally determined to be
6.625 * 10**-34 joule-seconds. So to find E, we multiply h by the frequency
and obtain E = hf = (6.625 * 10**-34)(7.0 * 10**14) = 46.375 * 10**-20 joule
or in standard notation, E = 4.6375 * 10**-19 joule per photon.
Hope this answers your question.Sorry if I calculated wrong.</span>
Answer:
its made up of both but I would probably say kinetic
Explanation:
Answer:
P₂ = 0.09 atm
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 0.225 L
Initial pressure = 338 mmHg (338/760 =0.445 atm)
Initial temperature = 72 °C (72 +273 = 345 K)
Final temperature = -15°C (-15+273 = 258 K)
Final volume = 1.50 L
Final pressure = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 0.445 atm × 0.225 L × 258 K / 345 K × 1.50 L
P₂ = 25.83 atm .L. K / 293 K . L
P₂ = 0.09 atm
Bzjnu8:i9.8&9olzlns soccer