Unfortunately the data provided doesn't include the DENSITY of the ammonium chloride solution and molarity is defined as moles per volume. So without the density, the calculation of the molarity is impossible. But fortunately, there are tables available that do provide the required density and for a 20% solution by weight, the density of the solution is 1.057 g/ml.
So 1 liter of solution will mass 1057 grams and the mass of ammonium chloride will be 0.2 * 1057 g = 211.4 g. The number of moles will then be 211.4 g / 53.5 g/mol = 3.951401869 mol. Rounding to 3 significant digits gives a molarity of 3.95.
Now assuming that your teacher wants you to assume that the solution masses 1.00 g/ml, then the mass of ammonium chloride will only be 200g, and that is only (200/53.5) = 3.74 moles.
So in conclusion, the expected answer is 3.74 M, although the correct answer using missing information is 3.95 M.
Answer:
The electronic configuration of the element with Atomic number 19 is 2,8,8,1. The element is potassium. It is an alkali metal with one valence electron.
A hydrate is a substance where in it contains water and other constituent elements. To know whether if that compound was a hydrate,you should record its mass, then put it in a test tube and heat it with a Bunsen burner. If the compound is a hydrate, the water in the compound will discharge in the form of water vapor. At the next 5-10 minutes, remove it in the test tube and weigh it up again. If the mass is now fewer, that means that there was water existing that has now evaporated, and the compound was a hydrate.
Protons are held inside nucleous with neutrons with large amount of force. So mere rubbing doesn't help in breaking the nucleous of an atom. But electrons are far from the nucleous and the force of attraction is smaller. So electrons can jump readily while protons can't
Answer:
Mass = 18.9 g
Explanation:
Given data:
Mass of Al₂O₃ formed = ?
Mass of Al = 10.0 g
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 10.0 g/ 27 g/mol
Number of moles = 0.37 mol
Now we will compare the moles of Al and Al₂O₃.
Al : Al₂O₃
4 : 2
0.37 : 2/4×0.37 = 0.185 mol
Mass of Al₂O₃:
Mass = number of moles × molar mass
Mass = 0.185 mol × 101.9 g/mol
Mass = 18.9 g