Answer:
Step-by-step explanation:
Alright, lets get started.
Suppose they take t minutes to meet each other.
Distance covered by first friend in t minutes, = 0.2 *t=0.2∗t
Distance covered by second friend in t minutes , =0.15 *t=0.15∗t
Total distance is given as 7, so
0.2 t + 0.15 t = 70.2t+0.15t=7
0.35 t = 70.35t=7
t = 20t=20
means after 20minutes they will meet.
SO. the average speed is 10m: Answer
For the given reaction, according to the Law of Conservation of Energy, the energy required to decompose Hcl and produce
are equal.
Answer: Option C
<u>Explanation:</u>
According to law of conservation's of energy, energy can only be transferred from reactants to product side. So in this process, it is stated that 185 kJ of energy will be needed to decompose it. So that 185 kJ of energy will be getting transferred to produce the creation of hydrogen and chloride in the product side.
So if we see from the reactants side, the energy of 185 kJ is required for decomposition of hydrogen chloride. Similarly, if we see from the product side, the 185 kJ utilized for decomposition is transferred as energy required to create hydrogen and chlorine atoms. This statement will be in accordance with the law of conservation's of energy.
A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions. ( K, Cl)...
Answer:

Explanation:
Hello!
In this case, considering the given chemical reaction:

Thus, by applying the law of rate proportions, we can write:

Whereas the stoichiometric coefficients of reactants are negative due their disappearance and that of the product is positive due to its appearance. In such a way, when we relate the rate of disappearance of hydrogen gas to the rate of formation of hydrogen iodide, we obtain:

Best regards!
Answer:
See below
Explanation:
A chemist preforms the following: Neutralizing nitric acid (HNO3) with soda ash (Na2CO3). This reaction will then create sodium nitrate and carbonic acid, which will then decompose into water (H20)