<span>Well it depends on percentage by what, but I'll just assume that it's percentage by mass.
For this, we look at the atomic masses of the elements present in the compound.
Cu has an atomic mass of 63.546 amu
Fe has 55.845 amu
and S has 36.065 amu
Since there are 2 molecules of Sulfur for each one of Cu and Fe, we'll multiply the Sulfur atomic weight by 2 to obtain 72.13 amu
So we have not established the mass of the compound in amus
63.546 + 55.845 + 72.13 = 191.521
That is the atomic mass of Chalcopyrite. and Iron's atomic mass is 55.845
So to get the percentage, or fraction of iron, we take 55.845 / 191.521
Which comes out to 29.15% by mass
Mass of the sample is not needed for this calculation, but since the question mentions it I would go ahead and check if the question isn't also asking for the mass of Iron in the sample as well, in which case you just find the 29.15% of 67.7g</span>
The simple machine used is called atwood machine.
The solids are characterized as amorphous and crystalline solids based on the arrangement of atoms. The solids that are amorphous are rubber, plastic, candle wax, and glass.
<h3>What are amorphous solids?</h3>
The solids have the arrangement of atoms in the lattice. The solids with an appropriate arrangement of atoms are crystalline solids. For example, sugar, graphite.
The solids with irregular arrangements of atoms in the lattice are amorphous solids. For example, glass, rubber.
Thus, the solids that are amorphous in nature are rubber, plastic, candle wax, and glass.
Learn more about amorphous solids, here:
brainly.com/question/4626187
Explanation:
The rest of the energy is passed on as food to the next level of the food chain. The figure at the left shows energy flow in a simple food chain. Notice that at each level of the food chain, about 90% of the energy is lost in the form of heat.
That's a really hard on I thing that you should just tell your teacher that it was hard for you and I'm sure she or he will understand