Slope of a curve Y plotted against X is mathematically given as

now here we can see that if similarly graph is plotted against distance and time then slope is given as

here we can say that above is ratio of small distance and very small interval of time.
so here we can say that this ratio of distance and time for very small interval of time is known as instantaneous speed of the object which is falling freely under gravity.
So here slope of the graph will represent the speed at a given instant.
When any boat displaces a weight of water equal to its own weight, it floats. This is called the "principle of flotation": A floating object displaces a weight of fluid equal to its own weight.
Answer:
a) t = 19.6 s, b) fr = 1.274 10⁴ N
Explanation:
This is a Newton's second law problem
Y Axis
for the cabin
N₁-W₁ = 0
N₁ = W₁
for the trailer
N₂- W₂ = 0
N₂ = W₂
X axis
for the cabin plus trailer, where friction is only in the cabin
fr = (m₁ + m₂) a
the friction force equation is
fr = μ N
we substitute
μ N₁ = (m₁ + m₂) a
μ m₁ g = (m₁ + m₂) a
a = μ g 
let's calculate
a = 0.65 9.8
a = 1,274 m / s²
a) to find the stopping distance we can use kinematics
Let's slow down the sI system
v₀ = 90 km / h (1000 m / 1km) (1h / 3600s) = 25 m / s
v = v₀ - a t
when it is stopped its speed is zero
0 = v₀ - at
t = v₀ / a
t = 25 / 1.274
t = 19.6 s
b) the friction force is
fr = 0.65 2000 9.8
fr = 1.274 10⁴ N
This is the braking force and also the forces that couple the cars.
The x component of the force is 8.4N * cos(31°) = 7.2N (2 s.f.)