Swimming, because during swimming we use more muscles than when we sprint, stretch, etc..
Answer:
the correct answer is c
Explanation:
In this exercise we seek the momentum
I = F t
this value is set because forces and time are given.
Now we can use the relationship between linear momentum and momentum
I = p_f - p₀
I = m v_f - m v₀
suppose that the two spheres depart with the same initial velocity
Let's analyze these results, the value of the impulse is the same, so the body of lower mass must acquire greater speed or momentum
consequently the lighter sphere acquires more final speed, but the change of momentum is the same in the two spheres
Consequently the correct answer is c
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.
Answer:
1.28 m
Explanation:
Generally, pressure of fluid is given by
where g is acceleration due to gravity, h is the height and
is the density
Considering that the pressure for mercury is same as for blood only that the height and density of fluid are different then
Since g is constant, then
Making
the subject of the formula then

Where subscripts m and b denote mercury and blood respectively
Assuming density of blood is 1060 Kg/m3, density of mercury as 13600 Kg/m3 and substituting height of mercury for 0.1 m then

According to Newtons' second law of motion, acceleration of an object is Net force acting on the object divided by the mass
Mathematically, a = F/m
Hope this helps!