1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
8

A 53.3 kg woman slides down a 35.0° hill with an acceleration of 4.10 m/s. What is the friction force acting on the woman?

Physics
1 answer:
lorasvet [3.4K]3 years ago
5 0

Answer:

I attached an image that should help.

Explanation:

Check it out.

You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
In this first example of constant accelerated motion, we will simply consider a car that is initially traveling along a straight
algol13

Answer:

v_{f} =25m/s

Explanation:

Kinematics equation for constant acceleration:

v_{f}  =v_{o} + at=15+2*5=25m/s

4 0
3 years ago
Need help I'll give you 30 points please.
Ksivusya [100]

Cathode Ray Tube i think?

7 0
3 years ago
1. Compare the speed that light waves travel in air to the speed that sound waves travel in the air. How many times faster do li
Vladimir79 [104]

Answer:

895522 times faster.

Explanation:

From the question given above, the following data were obtained:

Speed of sound in air (v) = 335 m/s

Speed of light in air (c) = 3×10⁸ m/s

How many times faster =.?

To obtain how many times faster light travels in air than sound, do the following

c : v => 3×10⁸ : 335

c/v = 3×10⁸ / 335

c/v = 895522

Cross multiply

c = 895522 × v

From the illustrations made above, we can see that the speed of the light in air (c) is 895522 times the speed of sound in air.

Thus, light travels 895522 times faster than sound in air.

6 0
2 years ago
Is the temperature and density of Earth's crust high or low? Why?
Setler [38]

Answer:

The crust is the first layer of the earth. It is split up into two parts the continental crust, and the oceanic crust. The oceanic crust takes up 71% of the earths crust, and the other 29% of the crust is continental. The continental is made up of igneous rocks, and the oceanic crust is made up of sedimentary and basalt rocks. The continental crust is older than the oceanic crust, some of the rocks are 3.9 billion years old. The density average of the oceanic crust is 3g/cm. The average density of the continental earth is 2.7g/cm. The temperature of the crust is around 200-400 degrees Celsius. The crust is about 60 km thick under a continent and 5 km thick under the ocean. The crust is constantly moving.  The crust doesn't even make up 1% of the earth!  The crust is the layer were tectonic plates can be found.

Explanation:

7 0
3 years ago
Other questions:
  • What is 1000 N in kilograms
    10·1 answer
  • With which field of science is Albert Einstein associated? biology chemistry medecine physics
    8·2 answers
  • With what scientific discovery is sir isaac newton most commonly associated? the theory of gravity boyle's law heliocentrism
    11·2 answers
  • Why are you able to observe the Doppler effect on earth with sound waves but not with light waves?
    11·1 answer
  • Do comets have a liquid center
    13·1 answer
  • A lens is designed to work in the visible, near-infrared, and near-ultraviolet. The best resolution of this lens from a diffract
    6·1 answer
  • [1] The assembly starts from rest and reaches an angular speed of 150 rev/min under the action of a 20-N force T applied to the
    7·2 answers
  • When the same pole of a magnet face each other it will attract each other true or false?​
    7·1 answer
  • The critical path is the sequence of activities that determine the latest date by which the project can be evaluated.
    10·1 answer
  • Which pathway is the foundation for the majority of ecosystems and food chains on earth?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!