Answer:
No
Explanation:
Loudness describes how people perceive sound (see loudness). ... If people could hear equally well at all frequencies, the contour lines would be flat because the same measured sound intensity would be perceived to be equally loud regardless of the sound frequency. In fact, people do not hear as well at low frequencies.
<span>First you have to convert 7.68 cal/sec to cal/min to do that, just multiply by 60 So it will be 460.8 cal/min now convert that to kcal/min kcal = kilocalories = 1000 calories. so just divide by 1000 and youll have your answer in kcal/min </span>
Answer:
3.6 m/s
Explanation:
From the law of conservation of momentum,
Total momentum before jump = Total momentum after jump
<em>Note: Before Dan jump off the skateboard, they where both moving with the same velocity</em>
u(m+m') = mv+m'v'................. Equation 1
Where m = Dan's mass, m' = mass of the skateboard, u = common velocity before the jump, v = Dan's final velocity, v' = The final velocity of the skateboard.
make v the subject of the equation
v = [u(m+m')-m'v')]/m.............. Equation 2
Given: u = 4.0 m/s, m = 50 kg, m' = 5 kg, v' = 8 m/s
Substitute into equation 2
v = [4(50+5)-(5×8)]/50
v = (220-40)/50
v = 180/50
v = 3.6 m/s
The car undergoes an acceleration <em>a</em> such that
(45.0 km/h)² - 0² = 2 <em>a</em> (90 m)
90 m = 0.09 km, so
(45.0 km/h)² - 0² = 2 <em>a</em> (0.09 km)
Solve for <em>a</em> :
<em>a</em> = (45.0 km/h)² / (2 (0.09 km)) = 11,250 km/h²
Ignoring friction, the net force acting on the car points in the direction of its movement (it's also pulled down by gravity, but the ground pushes back up). Newton's second law then says that the net force <em>F</em> is equal to the mass <em>m</em> times the acceleration <em>a</em>, so that
<em>F</em> = (4500 kg) (11,250 km/h²)
Recall that Newtons (N) are measured as
1 N = 1 kg • m/s²
so we should convert everything accordingly:
11,250 km/h² = (11,250 km/h²) (1000 m/km) (1/3600 h/s)² ≈ 0.868 m/s²
Then the force is
<em>F</em> = (4500 kg) (0.868 m/s²) = 3906.25 N ≈ 3900 N
Answer:
Acceleration(a) = 
v = final velocity = 5.5 m/s
u = initial velocity = 3 m/s
t = time = 9s


(approx)