Answer:
The velocity of the skateboard is 0.774 m/s.
Explanation:
Given that,
The spring constant of the spring, k = 3086 N/m
The spring is stretched 18 cm or 0.18 m
Mass of the student, m = 100 kg
Potential energy of the spring, 
To find,
The velocity of the car.
Solution,
It is a case of conservation of energy. The total energy of the system remains conserved. So,






v = 0.774 m/s
So, the velocity of the skateboard is 0.774 m/s.
Answer:
Explanation:
The question is one that examine the physical fundamental of mechanics of a cylindrical vessel .
We would use the Euler' equation and some coriolis and centripetal force formula.
The fig below explains it.
Answer:
A)t=<u>1.375s</u>
B)t=11s
Explanation:
for this problem we will assume that the east is positive while the west is negative, what we must do is find the relative speed between the wave and the powerboat, and then with the distance find the time for each case
ecuations
V=Vw-Vp (1)
V= relative speed
Vw= speed of wave
Vp=Speesd
t=X/V(2)
t=time
x=distance=44m
A) the powerboat moves to west
V=18-(-14)=32m/s
t=44/32=<u>1.375s</u>
B)the powerboat moves to east
V=18-14=4
t=44/4=<u>11s</u>
Answer:
Increasing the launch height increases the downward distance, giving the horizontal component of the velocity greater time to act upon the projectile and hence increasing the range.
Explanation: