Given that in a parallel circuit:
R1 = 12 ohms
R2= 15 ohms
I = 12 A
I2 = 4 A
V=?
R=?
R3 =?
P=?
Since,
V= IR
or,
V2 = I2 * R2
V2= 4* 15
V2 = 60V
Since in a parallel circuit voltage remain same in all component of the circuit and is equal to the source voltage.
Therefore,
V= V1 = V2 = V3 = 60V
Since,
V= IR
R= V/I
R= 60/12
R= 5 ohm
That is total resistance is equal to 5 ohms.
Since for parallel circuit,
1/R= 1/R1 + 1/R2 + 1/R3
1/5= 1/12+ 1/15 + 1/R3
or
1/R3= 1/5- 1/12- 1/15
1/R3= 1/20
or
R3= 20 ohms
Since,
V=IR
I= V/R
I1= V1/ R1
I1= 60/12
I1= 5 A
I3= V3/R3
I3= 60/20
I3= 3A
Since,
P=VI
P= 60*12
P= 720 watt
P1= V1* I1
P1= 60* 5
P1= 300 watt
P2= V2* I2
P2= 60* 4
P2= 240watt
P3= V3*I3
P3= 60*3
P3= 180 watt
Hence we have,
R1= 12 ohms , R2= 15 ohms, R3= 20 ohms, R= 5 ohms
I1= 5A, I2= 4A, I3= 3A, I= 12 A
V1= V2= V3= V= 60V
P1= 300 watt, P2= 240 watt, P3 = 180 watt, P= 720 watt
Answer:
I don't know
Explanation:
i don't know this question answer for here
To solve this problem we will apply the principle of energy conservation. Here we have that the gravitational potential energy must be equal to the kinetic energy of the body. So,


Here,
m = mass of projectile
G = Gravitational Universal constant
M = Mass of the planet
R = Total height from center of mass of the planet
v = Velocity
Rearraning to find the velocity we have,


Our values are given as,





Replacing we have,


Therefore the initial speed of the projectile must be 4531.12m/s
Answer: Option (c) is the correct answer.
Explanation:
When two or more small nuclei combine together to form a larger nuclei then this process is known as nuclear reaction.
The smaller is an atom, the more energy it requires to release an electron. This energy is known as binding energy.
Thus, when two small nuclei fuse together then there will be more binding energy as compared to when two large nuclei fuse together.
For example, fusion of two hydrogen atoms release more energy then one helium atom, and upon binding excess energy is released into the space.
Hence, we can conclude that energy is released in a nuclear fusion reaction based on mass-energy equivalence because for small nuclei, the binding energy of the lighter nuclei is greater than the binding energy of the heavier nucleus.
You're describing free-fall. The acceleration is 9.8 meters per second-squared downward (toward the center of the Earth).