(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;

solve (1) and (2)

since the yoyo is pulled in vertical direction, T = mg 
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
Answer:
460 g
Explanation:
Heat lost by the warm water = heat gained by the cold water
-mCΔT = mCΔT
-m (4.184 J/g/K) (37°C − 85°C) = (1000 g) (4.184 J/g/K) (37°C − 15°C)
-m (37°C − 85°C) = (1000 g) (37°C − 15°C)
-m (-48°C) = (1000 g) (22°C)
m = 458 g
Rounded to two significant figures, you need a mass of 460 g of water.
Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


85 N - 40 N = 45 N
And depending on direction the greater force is being pulled towards