Answer: 6.36
Explanation:
Given
Radius of grindstone, r = 4 m
Initial angular speed of grindstone, w(i) = 8 rad/s
Final angular speed of the grindstone, w(f) = 12 rad/s
Time used, t = 4 s
Angular acceleration of the grinder,
α = Δw / t
α = w(f) - w(i) / t
α = (12 - 8) / 4
α = 4/4 = 1 rad/s²
Number of complete revolution in 4s =
Δθ = w(i).t + 1/2.α.t²
Δθ = 8 * 4 + 1/2 * 1 * 4²
Δθ = 32 + 1/2 * 16
Δθ = 32 + 8
Δθ = 40 rad/s
40 rad/s = 40/2π rpm = 6.36 rpm
Therefore, the grindstone does 6.36 revolutions during the 4 s interval
Answer:
When they are connected in series
The 50 W bulb glow more than the 100 W bulb
Explanation:
From the question we are told that
The power rating of the first bulb is 
The power rating of the second bulb is 
Generally the power rating of the first bulb is mathematically represented as

Where
is the normal household voltage which is constant for both bulbs
So

substituting values

Thus the resistance of the second bulb would be evaluated as

From the above calculation we see that

This power rating of the first bulb can also be represented mathematically as

This power rating of the first bulb can also be represented mathematically as

Now given that they are connected in series which implies that the same current flow through them so

This means that

So when they are connected in series

This means that the 50 W bulb glows more than the 100 \ W bulb
Answer:
We know from the basic speed distance relation that

Since the car started from rest and it covered the distance between the 2 officer's in 19 minutes we have speed of the car

Which clearly exceeds the limit of 
Answer:
3000 hurs
Explanation: just divide 150000 by 50 and get 3000
Answer:
boron
aluminum
gallium
indium
thallium
Explanation:
Any of these could work. Nitrogen has 5 valence electrons so you just needed to pick an element that has 3 valence electrons that nitrogen could borrow. This periodic table shows valence electron counts: