1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
3 years ago
14

A 2100 g block is pushed by an external force against a spring (with a 22 N/cm spring constant) until the spring is compressed b

y 11 cm from its uncompressed length. The compressed spring and block rests at the bottom of an incline of 28◦ with the spring lying along the surface of the ramp.
After all the external forces are removed (so the compressed spring releases the mass) how far D along the plane will the block move before coming to a stop? Answer in units of m.
Physics
1 answer:
Vilka [71]3 years ago
7 0

Answer:

6.5e-4 m

Explanation:

We need to solve this question using law of conservation of energy

Energy at the bottom of the incline= energy at the point where the block will stop

Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=\frac{1}{2} kx^{2} +PE1

Energy at the point where the block will stop consists of only gravitational potential energy=PE2

Hence from Energy at the bottom of the incline= energy at the point where the block will stop

⇒\frac{1}{2} kx^{2} +PE1=PE2

⇒PE2-PE1=\frac{1}{2} kx^{2}

Also PE2-PE2=mgh

where m is the mass of block

g is acceleration due to gravity=9.8 m/s

h is the difference in height between two positions

⇒mgh=\frac{1}{2} kx^{2}

Given m=2100kg

k=22N/cm=2200N/m

x=11cm=0.11 m

∴2100*9.8*h=\frac{1}{2}*2200*0.11^{2}

⇒20580*h=13.31

⇒h=\frac{13.31}{20580}

⇒h=0.0006467m=6.5e-4

You might be interested in
A small but measurable current of 3.8 × 10-10 A exists in a copper wire whose diameter is 2.5 mm. The number of charge carriers
Karolina [17]

Answer:

a) 4.9*10^-6

b) 5.71*10^-15

Explanation:

Given

current, I = 3.8*10^-10A

Diameter, D = 2.5mm

n = 8.49*10^28

The equation for current density and speed drift is

J = I/A = (ne) Vd

A = πD²/4

A = π*0.0025²/4

A = π*6.25*10^-6/4

A = 4.9*10^-6

Now,

J = I/A

J = 3.8*10^-10/4.9*10^-6

J = 7.76*10^-5

Electron drift speed is

J = (ne) Vd

Vd = J/(ne)

Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)

Vd = 7.76*10^-5/1.3584*10^10

Vd = 5.71*10^-15

Therefore, the current density and speed drift are 4.9*10^-6

And 5.71*10^-15 respectively

3 0
3 years ago
Label and describe what is happening in this picture
SOVA2 [1]
Something is reproducing.
7 0
3 years ago
PLEASE PROVIDE AN EXPLANATION.<br><br> THANKS!!!
ziro4ka [17]

Answer:

(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz

(b) 250 m/s

(c) 1250 N

(d) Positive x-direction

(e) 6.00 m/s

(f) 0.0365 m

Explanation:

(a) The standard form of the wave is:

y = A cos ((2πf) t ± (2π/λ) x)

where A is the amplitude, f is the frequency, and λ is the wavelength.

If the x term has a positive coefficient, the wave moves to the left.

If the x term has a negative coefficient, the wave moves to the right.

Therefore:

A = 0.0800 m

2π/λ = 0.300 m⁻¹

λ = 20.9 m

2πf = 75.0 rad/s

f = 11.9 Hz

(b) Velocity is wavelength times frequency.

v = λf

v = (20.9 m) (11.9 Hz)

v = 250 m/s

(c) The tension is:

T = v²ρ

where ρ is the mass per unit length.

T = (250 m/s)² (0.0200 kg/m)

T = 1250 N

(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).

(e) The maximum transverse speed is Aω.

(0.0800 m) (75.0 rad/s)

6.00 m/s

(f) Plug in the values and find y.

y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))

y = 0.0365 m

8 0
3 years ago
Read 2 more answers
Which of these BEST describes the term ecliptic? A. the circle where "Earth meets the sky" B. the change in azimuth and altitude
jeyben [28]
I'll say B ....hope that helps...
4 0
3 years ago
Read 2 more answers
The magnetic domains in a non-magnetized piece of iron are characterized by which orientation
mel-nik [20]
The unmagnetized pieces of iron would be randomly pointing to directions, this is true because although influenced with the magnetic domain, the direction of the unmagnetized iron field of attraction is not uniform or does not have preferred direction.
3 0
3 years ago
Other questions:
  • Well into the twentieth century, many scientists believed the ocean floor was
    6·1 answer
  • Fill in the blanks below:<br><br> Urgently need help!!!
    14·1 answer
  • What is the region around a magnet where the magnetic force is exerted?
    15·2 answers
  • Which statement best summarizes the advice Rudyard Kipling offers in "If"?
    9·2 answers
  • What type of bond is formed when two or more water molecules interact?
    14·1 answer
  • 19 points.
    5·2 answers
  • A tree frog leaping upward off the tree branch is pulled downward by
    11·1 answer
  • La taille d'un molécule d'eau est 0,4nm
    11·1 answer
  • What property of sound does a decibel measure
    13·2 answers
  • Does the collision between the cart and the brick follow the law of momentum conservation? Make a claim (yes or no) and support
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!