i know can you plzz help me with this question im sorry i didt answer your question i just need hel.
<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
Answer:
6666.67 Newtons
Explanation:
The formula F=ma (force is equal to mass multiplied by acceleration) can be used to calculate the answer to this question.
In this case:
- mass= 0.1mg= 1*10^-7 kg
- velocity= 4.00*10^3 m/s
- time= 6.00*10^-8 s
Using velocity and time, acceleration can be calculated as:
Substituting these values into the formula F=ma, the answer is:
- F= (1*10^-7)kg * (6.667*10^10) m/s²
- F= 6666.67 Newtons of force
Answer:
Lifetime = 4.928 x 10^-32 s
Explanation:
(1 / v2 – 1 / c2) x2 = T2
T2 = (1/ 297900000 – 1 / 90000000000000000) 0.0000013225
T2 = (3.357 x 10^-9 x 1.11 x 10^-17) 1.3225 x 10^-6
T2 = (3.726 x 10^-26) 1.3225 x 10^-6 = 4.928 x 10^-32 s
Answer:
mass
Explanation:
This energy of motion is what we call kinetic energy. ... In fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses.
pls make as brainlieast