<span> Space satellites, laser beams, mirrors</span> are used to calculate the distance a continent has moved in a year.
Therefore, your correct answer would be "all of the above".
Answer: C. Tissue Paper
Explanation:
When we talk about objects that are illuminated by a light source, they are classified according to the amount of light they let through them, as follows:
Transparent bodies: Those who let in almost all the light that incides them. Therefore, the intensity of the incident light is very similar to that transmitted. For example: Clear Glass
Opaque bodies: Those who do not let the light pass. For example: Cream Cheese and Orange Juice
Translucent bodies: Those that let in a portion of the incident light. That is, they let approximately half of the light that falls on them pass through. For example: Tissue Paper
Answer:
Power output = 96.506 watts
Explanation:
Drag coefficient (Cd) = 0.9
V = 7.3 m/s
Air density (ρ) = 1.225 kg/m^(3)
Area (A) = 0.45 m^2
Let's find the drag force ;
Fd=(1/2)(Cd)(ρ)(A)(v^(2))
So Fd = (1/2)(0.9)(1.225)(0.45)(7.3^(2)) = 13.22N
Drag power = Drag Force x Drag velocity.
Thus drag power, = 13.22 x 7.3 = 96.506 watts
L = length of the meter stick = 1 m
h = height of center of mass of stick from bottom end on the floor = L/2 = 1/2 = 0.5 m
m = mass of the meter stick
I = moment of inertia of the meter stick about the bottom end
w = angular velocity as it hits the floor
moment of inertia of the meter stick about the bottom end is given as
I = m L²/3
using conservation of energy
rotational kinetic energy of meter stick as it hits the floor = potential energy when it is vertical
(0.5) I w² = m g h
(0.5) (m L²/3) w² = m g h
( L²) w² = 6g h
( 1²) w² = 6 (9.8) (0.5)
w = 5.4 rad/s
Answer:
1.805 mm
Explanation:
Extension in the steel wire = WL_{steel}/AE_{steel}
Extension in the aluminium wire = WL_{Al}/AE_{Al}
Total extension = W/A * (L_{steel}/E_{steel} + L_{Al}/E_{Al})
we have:
W = mg
W = 5 × 9.8
W = 49 N
Area A = π/4 × (0.001)²
= 7.85398 × 10 ⁻⁷ m²
Total extension = W/A * (L_{steel}/E_{steel} + L_{Al}/E_{Al})
Total extension = 49/ 7.85398 × 10 ⁻⁷ ( (1.5/ 200×10⁹) + 1.5/ 70×10⁹))
Total extension = 0.0018048
Total extension = 1.805 mm
Thus, the total extension = the resulting change in the length of this composite wire = 1.805 mm