Answer:

Explanation:
Asúmase que la patinadora experimenta una aceleración constante. La fuerza neta experimentada por la patinadora:
![F_{net} = (50\,kg)\cdot \left[\frac{\left(15\,\frac{m}{s}\right)^{2}-\left(0\,\frac{m}{s}\right)^{2} }{2\cdot (3000\,m)} \right]](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%2850%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%5Cleft%2815%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D%20%7D%7B2%5Ccdot%20%283000%5C%2Cm%29%7D%20%5Cright%5D)

Answer:
There is no change, unless your mass is somehow at the quantum level, at which the concept of half-life breaks down.
Half life is a property of the specific radioactive isotope...NOT of the initial sample's mass.
Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance