0.3268 moles of PC15 can be produced from 58.0 g of Cl₂ (and excess
P4)
<h3>How to calculate moles?</h3>
The balanced chemical equation is

The mass of clorine is m(
) = 58.0 g
The amount of clorine is n(
) = m(
)/M(
) = 58/70.906 = 0.817 mol
The stoichiometric reaction,shows that
10 moles of
yield 4 moles of
;
0.817 of
yield x moles of 
n(
) = 4*0.817/10 = 0.3268 mol
To know more about stoichiometric reaction, refer:
brainly.com/question/14935523
#SPJ9
Answer:
You would weigh less on Uranus than on Earth because Uranus is far less mass-ive and dense than the Earth. This means that there is less gravity. Therefore, you would weigh less.
Explanation:
Even though Uranus is bigger, it is less massive; that is, there is less mass that makes up the planet. The volume of the planet might be larger, but the actual amount of mass isn't.
By the way, you couldn't stand on Uranus. It's made of gas!
Answer:
66.67%
Explanation:
From the given information:
mass of cyclohexane = 2.9949 grams
density of cyclohexane = 0.779 g/mL
Recall that:
Density = mass/volume
∴
Volume = mass/density
So, the volume of cyclohexane = 2.9949 g/ 0.779 g/mL
= 3.8445 mL
Also,
mass of propylbenzene = 1.6575 grams
density of propylbenzene = 0.862 g/mL
Volume of propylbenzene = 1.6575 g/ 0.862 g/mL
= 1.9229 mL
The volume % composition of cyclohexane from the mixture is:



= 66.67%
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!