Answer:
ΔH°comb=-5899.5 kJ/mol
Explanation:
First, consider the energy balance:
Where
is the calorimeter mass and
is the number of moles of the samples;
is the combustion enthalpy. The energy balance says that the energy that the reaction release is employed in rise the temperature of the calorimeter, which is designed to be adiabatic, so it is suppose that the total energy is employed rising the calorimeter temperature.
The product
is the heat capacity, so the balance equation is:

So, the enthalpy of combustion can be calculated:

I will be happy to solve any doubt you have.
In normal fission reactors, the fuel used to start the nuclear fission is Uranium-235.
Generally, fuel rods enriched with uranium-235 are used to start the fission. When a nucleus of uranium-235 absorbs a neutron, it becomes unstable and then it breaks apart, producing two smaller nuclei, several neutrons and energy. The additional neutrons produced in the reaction are then absorbed by other nuclei of uranium-235, triggering other fission reactions, and so on.
Answer:
work done=fdcosø
f=mg=450N
d=+3m
ø=180
450×3×cos(180°) power=work done/
time taken
1350×-1 p=135watts
Answer:
1000 N
Explanation:
An impulse results in a change of momentum
FΔt = mΔv
F = 0.001 kg(1000 - 0) m/s / 0.001 s = 1000 N
The water droplets then became precipitation, and depending on the climate/weather, it could turn into rain, snow, sleet, or even hail.
: D