Answer:If a wave y(x, t) = (6.0 mm) sin(kx + (600 rad/s)t + Φ) travels along a string, how much time does any given point on the string take to move between displacements y = +2.0 mm and y = -2.0 mm?
Explanation:
Answer:
The initial vertical velocity is zero, u = 0 m/s
Explanation:
Given;
height of the table, h = 0.55 m
horizontal distance traveled by the tennis, x = 0.12 m
Apply the following kinematic equation;
h = ut + ¹/₂gt²
where;
u is the initial vertical velocity = 0, since the tennis ball rolled off the edge of a table.
h = ¹/₂gt²
The time to fall from the vertical height is given by;

The initial horizontal velocity of the tennis is given by;
x = vₓt
vₓ = x / t
vₓ = (0.12) / (0.335)
vₓ = 0.358 m/s
Therefore, the initial vertical velocity is zero, u = 0 m/s and initial horizontal velocity, vₓ is 0.358 m/s
Answer:
A mercury barometer is a device use to measure stomspheric pressure and is constructed as following:
- A mercury barometer requires a tube which has one close end, and one open end.
- Tube is placed upside down in a beaker in such a way so that one end open in the beaker and the other remain outside of the beaker.
- The barometric liquid (mercury) is then filled in the tube by pouring mercury liquid in the beaker.
The position of tube creates vacuum between the closed end of the tube and liquid surface and the Mercury has high density that is why used as the liquid to measure pressure.
The cooler the temp of the star the star would appear to glisten a red. if the star is warmer the star would be a light blue or blue. An example would be the tiny red dwarf stars. they only have 7% of the suns heat so they appear red.
Answer:
The correct answer would be downwards
Hope this helps have a good day