Answer:
1 (pitcher), 2 (catcher), 3 (first baseman), 4 (second baseman), 5 (third baseman), 6 (shortstop), 7 (left fielder) 8 (center fielder), and 9 (right fielder)
Explanation:
There are nine fielding positions in baseball. Each position conventionally has an associated number, for use in scorekeeping by the official score
<h2>Hello!</h2>
The answer is: D. Coal
<h2>
Why?</h2>
Coal power plants burn coal in to get steam, the steam flows into a turbine which is coupled to an electrical generator.
Coal power plants work burning high amounts of coal into a boiler, generation a lot of steam under extreme pressures. The steam is obtained when the water is heated by the burning coal, then the steam is cooled, being transformed in liquid water again (due the condensation process) and it's sent back on a cyclical process.
Have a nice day!
A Car at the top of a hill.
It is because in that case, produce of mass and height is highest which is directly proportional to potential energy
In short, Your Answer would be Option A
Hope this helps!
Answer:
x = 41.28 m
Explanation:
This is a projectile launching exercise, let's find the time it takes to get to the base of the cliff.
Let's start by using trigonometry to find the initial velocity
cos 25 = v₀ₓ / v₀
sin 25 = Iv_{oy} / v₀
v₀ₓ = v₀ cos 25
v_{oy} = v₀ sin 25
v₀ₓ = 22 cos 25 = 19.94 m / s
v_{oy} = 22 sin 25 = 0.0192 m / s
let's use movement on the vertical axis
y = y₀ + v_{oy} t - ½ g t²
when reaching the base of the cliff y = 0 and the initial height is y₀ = 21 m
0 = 21 + 0.0192 t - ½ 9.81 t²
4.905 t² - 0.0192 t - 21 = 0
t² - 0.003914 t - 4.2813 =0
we solve the quadratic equation
t =
t =
t₁ = 2.07 s
t₂ = -2.067 s
since time must be a positive scalar quantity, the correct result is
t = 2.07 s
now we can look up the distance traveled
x = v₀ₓ t
x = 19.94 2.07
x = 41.28 m
The distance covered by car is equal to (assuming it is moving by uniform motion) the product between the car's speed and the time of the car ride, 4 h:

where

is the car's speed

is the duration of the car ride
Similarly, the distance covered by train is equal to the product between the train's speed and the duration of the train ride, 7 h:

The total distance covered is S=255 km, which is the sum of the distances covered by car and train:

which becomes

(1)
we also know that the train speed is 5 km/h greater than the car's speed:

(2)
If we put (2) into (1), we find

and if we solve it, we find


So, the car speed is 20 km/h and the train speed is 25 km/h.