Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
Answer: 1018.26 m/s
Explanation:
Approaching the orbit of the Moon around the Earth to a circular orbit (or circular path), we can use the equation of the speed of an object with uniform circular motion:
Where:
is the speed of travel of the Moon around the Earth
is the Gravitational Constant
is the mass of the Earth
is the distance from the center of the Earth to the center of the Moon
Solving:
This is the speed of travel of the Moon around the Earth
There is a gel (agarose) that is placed in abuffer-filled box and an electrical
field is applied via a power supply. The negative terminal
is at the far end (black wire), this causes DNA migrates toward the anode (red
wire).
Answer:
a)speed of light.
a)speed of light×time=distance.
Explanation:
light has a constant speed of 299,792,458m/s
Answer:
Explanation:
Heat required to raise the temperature
= mass x specific heat x rise in temperature
= .34 x 4200 x ( 95 - 23 )
= 102816 J .
1 kWh = 1000 x 60 x 60 J
= 3600000 J
102816 J = 102816 / 3600000
= .02856 kWh .