Answer:
-6, -5, -4, -3, and -2
n≥-6
Step-by-step explanation:
Multiply both sides by 2
n≥-6
so the values that make this true are -6, -5, -4, -3, and -2
Answer:
Would be true
Step-by-step explanation:
Because 502/2 = 251. (Divides evenly into 2, resulting in 251)
Depending on the context of the question, if the answer resulted in a decimal, it would be false.
Answer:
(2,8)
Step-by-step explanation:
When you reflect over the y-axis, you change the x to the opposite sign
y reflection → (-x,y)
Answer:
La suma de cifras del producto original es igual a 12.
Step-by-step explanation:
De acuerdo a la información proporcionada, si multiplicas un número "x" por 32 su resultado sería igual al producto original "y" más 54 dado que dice que se obtiene un producto mayor en 54 al producto original, lo que se puede expresar de la siguiente forma:
32x=y+54
Además, se puede inferir a partir del enunciado que si el número x se hubiera multiplicado por 23 el resultado habría sido el producto original que lo denominamos como "y", por lo que puedes decir que:
y=23x
Ahora puedes reemplazar y=23x en 32x=y+54 y despejar x:
32x=23x+54
32x-23x=54
9x=54
x=54/9
x=6
Finalmente, puedes reemplazar el valor de x en y=23x:
y=23x
y=23*6
y=138
Suma de cifras: 1+3+8 = 12
De acuerdo a esto, la respuesta es que la suma de cifras es igual a 12.
Answer: Phillip is correct. The triangles are <u>not </u>congruent.
How do we know this? Because triangle ABC has the 15 inch side between the two angles 50 and 60 degrees. The other triangle must have the same set up (just with different letters XYZ). This isn't the case. The 15 inch side for triangle XYZ is between the 50 and 70 degree angle.
This mismatch means we cannot use the "S" in the ASA or AAS simply because we don't have a proper corresponding pair of sides. If we knew AB, BC, XZ or YZ, then we might be able to use ASA or AAS.
At this point, there isn't enough information. So that means John and Mary are incorrect, leaving Phillip to be correct by default.
Note: Phillip may be wrong and the triangles could be congruent, but again, we don't have enough info. If there was an answer choice simply saying "there isn't enough info to say either if the triangles are congruent or not", then this would be the best answer. Unfortunately, it looks like this answer is missing. So what I bolded above is the next best thing.