1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
3 years ago
9

A mass on a string is swung in a circle of radius 0.75m at 7.0m/s.what its rate of acceleration.​

Physics
1 answer:
Ulleksa [173]3 years ago
3 0

Explanation:

ac = v^2/r

= (7.0 m/s)^2/(0.75 m)

= 65 m/s^2

You might be interested in
The period T of a simple pendulum depends
Alenkinab [10]

Answer:

too old

Explanation:

7 0
3 years ago
explain how many minimum number of geostationary satellites are required for global coverage of T.V transmission
kobusy [5.1K]

Answer:I honestly don't know

Explanation:

4 0
4 years ago
Which of Newton's motion laws BEST explains HOW a rock accelerates when it is dropped off a bridge?
ki77a [65]

Answer:

a

Explanation:

6 0
4 years ago
Read 2 more answers
A wave of infrared light has a speed of 6 m/s and a wavelength of 12 m. What is the frequency of this wave?
givi [52]
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.

If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.

For the wave you described . . .

             Frequency  =  (speed)  /  (wavelength)

                                 =  (6 m/s)  /  (12 m)

                                 =      0.5 / sec

                                 =      0.5 Hz .  

(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
5 0
3 years ago
Read 2 more answers
A 10 g particle undergoes SHM with an amplitude of 2.0 mm and a maximum acceleration of magnitude 8.0 multiplied by 103 m/s2, an
Nat2105 [25]

Answer:

a)T=0.0031416s

b)v_{max}=6.283\frac{m}{s}

c) E=0.1974J

d)F=80N

e)F=40N

Explanation:

1) Important concepts

Simple harmonic motion is defined as "the motion of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's Law (F=-Kx). The motion experimented by the particle is sinusoidal in time and demonstrates a single resonant frequency".

2) Part a

The equation that describes the simple armonic motion is given by X=Acos(\omega t +\phi)    (1)

And taking the first and second derivate of the equation (1) we obtain the velocity and acceleration function respectively.

For the velocity:

\frac{dX}{dt}=v(t)=-A\omega sin(\omega t +\phi)   (2)

For the acceleration

\frac{d^2 X}{dt}=a(t)=-A\omega^2 cos(\omega t+\phi)   (3)

As we can see in equation (3) the acceleration would be maximum when the cosine term would be -1 and on this case:

A\omega^2=8x10^{3}\frac{m}{s^2}

Since we know the amplitude A=0.002m  we can solve for \omega like this:

\omega =\sqrt{\frac{8000\frac{m}{s^2}}{0.002m}}=2000\frac{rad}{s}

And we with this value we can find the period with the following formula

T=\frac{2\pi}{\omega}=\frac{2 \pi}{2000\frac{rad}{s}}=0.0031416s

3) Part b

From equation (2) we see that the maximum velocity occurs when the sine function is euqal to -1 and on this case we have that:

v_{max}=A\omega =0.002mx2000\frac{rad}{s}=4\frac{m rad}{s}=4\frac{m}{s}

4) Part c

In order to find the total mechanical energy of the oscillator we can use this formula:

E=\frac{1}{2}mv^2_{max}=\frac{1}{2}(0.01kg)(6.283\frac{m}{s})^2=0.1974J

5) Part d

When we want to find the force from the 2nd Law of Newton we know that F=ma.

At the maximum displacement we know that X=A, and in order to that happens cos(\omega t +\phi)=1, and we also know that the maximum acceleration is given by::

|\frac{d^2X}{dt^2}|=A\omega^2

So then we have that:

F=ma=mA\omega^2

And since we have everything we can find the force

F=ma=0.01Kg(0.002m)(2000\frac{rad}{s})^2 =80N

6) Part e

When the mass it's at the half of it's maximum displacement the term cos(\omega t +\phi)=1/2 and on this case the acceleration would be given by;

|\frac{d^2X}{dt^2}|=A\omega^2 cos(\omega t +\phi)=A\omega^2 \frac{1}{2}

And the force would be given by:

F=ma=\frac{1}{2}mA\omega^2

And replacing we have:

F=\frac{1}{2}(0.01Kg)(0.002m)(2000\frac{rad}{s})^2 =40N

8 0
3 years ago
Other questions:
  • Calculate the de Broglie wavelength of an electron traveling at 2.0 x 10^8 m/s (me = 9.1*10^-31 kg).
    10·1 answer
  • It is possible to hang from a bare power line and not get electrocuted as long as you are not touching the ground, or any conduc
    11·1 answer
  • A man has a mass of 110kg. What is his weight?
    8·1 answer
  • The unified atomic mass unit is defined to be 1 u = 1.6605 ✕ 10−27 kg. Verify that this amount of mass converted to energy yield
    7·2 answers
  • the mass of a brick is 4 kg, find the mass of water displaced by it when completely immersed in water.​
    6·1 answer
  • a. What is the absorption coefficient for tin, with an imaginary part of the refractive index equal to 5.3 for 589.3-nm light? b
    9·1 answer
  • A 360-g metal container, insulated on the outside, holds 180.0 g of water in thermal equilibrium at 22.0°C. A 24.0-g ice cube, a
    8·1 answer
  • A bullet of mass 0.017 kg traveling horizontally at a high speed of 290 m/s embeds itself in a block of mass 5 kg that is sittin
    6·1 answer
  • Which of the following is not a multicellular organism?
    13·1 answer
  • • How much work is<br>required to lift a 2kg<br>object 2m high?<br>​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!