Answer:
(x,y) => (x+3, y+4)
Step-by-step explanation:
Given a triangle DEF, D(4,2), E(3,3), F(2,1).
Centroid of the area (and the vertices) equals the mean of the coordinates, namely ( (4+3+2)/3, (2+3+1)/3 ) = (3,2)
To translate (3,2) to (6,6), we need the rule
(x,y) => x+(6-3), y+(6-2), or
(x,y) => (x+3, y+4)