Yes, because each input value corresponds to exactly one output value.Yes, because the outputs increase as the inputs increase.No, because the graph is not continuous.No, because the curve indicates that the rate of change is not constant.
Answer:
1. Start with $1 and then double the money you have everyday for 30 days. You would end up with 1,073,741,824 on the 30th day.
Step-by-step explanation:
Why you should choose the first option:
1 x 2 = 2
2 x 2 = 4
4 x 2 = 8
8 x 2 = 16
16 x 2 = 32
32 x 2 = 64
64 x 2 = 128
128 x 2 = 256
256 x 2 = 512
512 x 2 = 1024
1024 x 2 = 2048
2048 x 2 = 4096
4096 x 2 = 8192
8192 x 2 = 16384
16384 x 2 = 32768
32768 x 2 = 65536
65536 x 2 = 131072
131072 x 2 = 262144
262144 x 2 = 524288
524288 x 2 = 1048576
1048576 x 2 = 2097152
2097152 x 2 = 4194304
4194304 x 2 = 8388608
8388608 x 2 = 16777216
16777216 x 2 = 33554432
33554432 x 2 = 67108864
67108864 x 2 = 134217728
134217728 x 2 = 268435456
268435456 x 2 = 536870912
536870912 x 2 = 1073741824
Answer:
<GOJ
Step-by-step explanation:
O is the center of the circle
So central angle is <GOJ
Answer:
Option A - Neither. Lines intersect but are not perpendicular. One Solution.
Option B - Lines are equivalent. Infinitely many solutions
Option C - Lines are perpendicular. Only one solution
Option D - Lines are parallel. No solution
Step-by-step explanation:
The slope equation is known as;
y = mx + c
Where m is slope and c is intercept.
Now, two lines are parallel if their slopes are equal.
Looking at the options;
Option D with y = 12x + 6 and y = 12x - 7 have the same slope of 12.
Thus,the lines are parrallel, no solution.
Two lines are perpendicular if the product of their slopes is -1. Option C is the one that falls into this category because -2/5 × 5/2 = - 1. Thus, lines here are perpendicular and have one solution.
Two lines are said to intersect but not perpendicular if they have different slopes but their products are not -1.
Option A falls into this category because - 9 ≠ 3/2 and their product is not -1.
Two lines are said to be equivalent with infinitely many solutions when their slopes and y-intercept are equal.
Option B falls into this category.