Answer:
c) is negative
Explanation:
As we know that work done by a force is the product of force and displacement vector.
W= F.d
F= Force
d= displacement
The work done by friction force always negative because it try to oppose the motion and act opposite to the direction of displacement.So the work done by air resistance is negative.
c) is negative
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
Answer:
The electric field between the plates is 120 V/m.
(c) is correct option.
Explanation:
Given that,
Potential difference = 12 volt
Distance = 10 cm = 0.1 m
We need to calculate the electric field between the plates
Using formula of electric field

Where, V = potential difference
d = distance between the plates
Put the formula


Hence, The electric field between the plates is 120 V/m.
The work that Sam should do in order to stop is the boat is the same as that of the kinetic energy of the object in order to counter its motion. Kinetic energy is calculated through the equation,
KE = 0.5mv²
where KE is kinetic energy, m is mass, and v is the velocity.
Substituting,
KE = 0.5(1200kg)(1.2 m/s)²
<em>KE = 864 J</em>