Answer:
The speed of light is faster in water. The Refractive index of water is 1.3 and the refractive index of glass is 1.5. From the equation n = c/v, we know that the refractive index of a medium is inversely proportional to the velocity of light in that medium. Hence, light travels faster in water.
Well, 0.1 is actually less than 0.7, but I understand what you're asking.
The coefficient of friction describes the relationship between two surfaces
that are sliding by each other. The higher the coefficient of friction is, the
'rougher' the meeting is, and the harder it is for one to slide over the other.
A skate blade against ice has a very low coefficient of friction. Sandpaper
against blue jeans has a high coefficient of friction.
A higher coefficient of friction means that when one thing is sliding over
the other one, friction robs more energy from the motion. It's harder to
push one thing over the other one, and when you let go, the moving one
slows down and stops sooner.
Air resistance is actually an example of friction. It prevents falling things
from falling as fast as they would if there were no air. The coefficient of
friction when something moves through air is pretty low. If the same
object were trying to move through molasses or honey, the coefficient
of friction would be greater.
Friction robs energy, and turns it into heat. So, especially in machinery with
moving parts, we want to make the coefficient of friction between the moving parts
as small as possible. That's what the OIL in a car's engine is for.
Answer:
Explanation:
Since both vectors are pointing on the same direction (Northeast), the sum of them will point in that same direction, and its magnitud will be the sum of the magnitudes of each vector (40m/s2+10m/s2). This problem is just a problem in one dimension. The sum of the vectors is then 50m/s2 Northeast.
Answer:
The correct answer is option 'a' 'The momentum is always conserved while as the kinetic energy may be conserved'
Explanation:
The conservation of momentum is a basic principle in nature which is always valid in an collision between 'n' number of objects if there are no external forces on the system. It is valid for both the cases weather the collision is head on or glancing or weather the object is elastic or inelastic.
The energy is only conserved in a collision that occurs on a friction less surface and the objects are purely elastic. Since in the given question it is mentioned that only the surface is friction less and no information is provided regarding the nature of the objects weather they are elastic or not hence we cannot conclusively come to any conclusion regarding the conservation of kinetic energy as the objects may be inelastic.