An unbalanced force is required to accelerate an object according to Newton's Second Law of Motion.
<h3>
What does Newton's Second Law of Motion state?</h3>
It states that the force applied to the object is equal to the product of mass and acceleration.

- An object will accelerate when the net force applied on the object is more than zero or unbalanced.
- The acceleration is the change in the direction or speed of the object. To achieve acceleration the force must be greater in a direction.
- When force is greater in one the object move in that direction which is known as acceleration.
Therefore, an unbalanced force is required to accelerate an object according to Newton's Second Law of Motion.
Learn more about Newton's Second Law of Motion.:
brainly.com/question/25810165
It is potential energy because the band is not in movement, th band has the potential to move.
We use the following expression
T = 2*pi *sqrt(l/g)
Where T is the period of the pendulum
l is the length of the pendulum
and g the acceleration of gravity
We solve for l
l = [T/2*pi]² *g = [30s/2*pi]²* 9.8 [m/s²] = 223.413 m
The tower would need to be at least 223.413 m high
120n
since the speed is doubled, her force is doubled
the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet
Explanation:
In this problem we are analzying the gravitational force acting between a planet and its moon.
The magnitude of the gravitational attraction between two objects is given by
where
:
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we are considering a planet and its moon. According to Newton's third law of motion,
"When an object A exerts a force (action force) on an object B, then object B exerts an equal and opposite force (reaction force) on object A"
If we apply this law to this situation, this means that the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly