<span>Answer:
For a disc, the moment of inertia about the perpendicular axis through the center is given by 0.5MR^2.
where M is the mass of the disc and R is the radius of the disc.
For the axis through the edge, use parallel axis theorem.
I = I(axis through center of mass) + M(distance between the axes)^2
= 0.5MR^2 + MR^2 (since the axis through center of mass is the axis through the center)
= 1.5 MR^2</span>
The answer is the third one down. New evidence may contradict the old evidence of a certain theory.
Is there any chemical names listed ?
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>
Answer:
If transpiration didn't take place water would still be able to enter the roots of a plant
Explanation:
transpiration is the process of water leaving from living organisms to the atmosphere, therefore, if transpiration didn't occur the water would not transpire to the atmosphere and would remain in the root but water absorption would not change because it is a biological need for the living organism as such