Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
Because if they dont research first they will be unprepared
Explanation:
Answer:
Hz
Explanation:
In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;
V(t) = V sin (ωt + Ф) -----------------(i)
Where;
V = amplitude value of the voltage
ω = angular frequency = 2 π f [f = cyclic frequency or simply, frequency]
Ф = phase difference between voltage and current.
<u><em>Now,</em></u>
From the question,
V(t) = 230 sin (100t) ---------------(ii)
<em><u>By comparing equations (i) and (ii) the following holds;</u></em>
V = 230
ω = 100
Ф = 0
<em><u>But;</u></em>
ω = 2 π f = 100
2 π f = 100 [divide both sides by 2]
π f = 50
f =
Hz
Therefore, the frequency of the voltage is
Hz
Answer:
T
Explanation:
= magnitude of current in each wire = 2.0 A
= length of the side of the square = 4 cm = 0.04 m
= length of the diagonal of the square =
a =
(0.04) = 0.057 m
= magnitude of magnetic field by wires at A and C


T
= magnitude of magnetic field by wire at B


T
Net magnitude of the magnetic field at D is given as



T
Answer:
When thermal energy is added to a substance, its temperature increases, which can change its state from solid to liquid (melting), liquid to gas (vaporization), or solid to gas (sublimation).
Explanation: