Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Mass = mr x moles
Mr of CuCl2 = ( 63.5) + ( 35.5 x 2) = 134.5
2.5 = 134.5 x moles
2.5 / 134.5 = moles
Moles = 0.019 (2DP)
0.25g of Al
Mr of Al = 27
0.25 = 27 x moles
0.25/ 27 = 0.0093 moles (2sf)
Hope this helps :)
Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>
Answer:
V₂ = 2.96 L
Explanation:
Given data:
Initial volume = 2.00 L
Initial temperature = 250°C
Final volume = ?
Final temperature = 500°C
Solution:
First of all we will convert the temperature into kelvin.
250+273 = 523 k
500+273= 773 k
According to Charles's law,
V∝ T
V = KT
V₁/T₁ = V₂/T₂
V₂ = T₂V₁/T₁
V₂ = 2 L × 773 K / 523 k
V₂ = 1546 L.K / 523 k
V₂ = 2.96 L