Answer:
Mg donates two electrons to O
Explanation:
Lewis dot notation uses dots and crosses to represent valence electrons on atoms.
Magnesium is a metal and would donate or lose electrons during bonding.
Oxygen is a non metal and would gain electrons during bonding.
The correct option is;
Mg donates two electrons to O
It has the most mass. but the electron cloud takes up the most space.
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.
Answer:
0.02 moles.
Explanation:
volume of H₂ gas at R.T.P = 480 cm³
Where
R.T.P = room temperature and pressure
molar volume of gas at = 24000 cm³
no. of moles of hydrogen = ?
Solution:
formula Used
no. of moles = volume of gas / molar volume
put values in above equation
no. of moles = 480 cm³ / 24000 cm³/mol
no. of moles = 0.02 mol
So,
no. of moles of hydrogen in 480 cm³ is 0.02 moles.