Answer: 13.5
Step-by-step explanation:
30% = 0.3.
Thus, simply do 0.3*45 to get 13.5.
Hope it helps <3
627/100 or 6 27/100 is the answer
The marginal distribution for gender tells you the probability that a randomly selected person taken from this sample is either male or female, regardless of their blood type.
In this case, we have total sample size of 714 people. Of these, 379 are male and 335 are female. Then the marginal probability mass function would be
![\mathrm{Pr}[G = g] = \begin{cases} \dfrac{379}{714} \approx 0.5308 & \text{if }g = \text{male} \\\\ \dfrac{335}{714} \approx 0.4692 & \text{if } g = \text{female} \\\\ 0 & \text{otherwise} \end{cases}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BG%20%3D%20g%5D%20%3D%20%5Cbegin%7Bcases%7D%20%5Cdfrac%7B379%7D%7B714%7D%20%5Capprox%200.5308%20%26%20%5Ctext%7Bif%20%7Dg%20%3D%20%5Ctext%7Bmale%7D%20%5C%5C%5C%5C%20%5Cdfrac%7B335%7D%7B714%7D%20%5Capprox%200.4692%20%26%20%5Ctext%7Bif%20%7D%20g%20%3D%20%5Ctext%7Bfemale%7D%20%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Bcases%7D)
where G is a random variable taking on one of two values (male or female).
First you open up the brackets so the sign for 2d changes to positive. So it will look like 3d-9+2d=51 then u simply the 3d-9+2d that should give 5d-9=51. Then you add 9 to both sides of the expression 5d-9+9=51+9. That will be 5d =60 so you divide 5 on both sides to find the value of 1 d which is 60/5=12 then to find 3d you multiply the value of d by three so it's 12(3)=36