1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength

by the formula

where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by

where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.
Answer:
<h2><u><em>
Plants use Nitrogen</em></u></h2>
Explanation:
<h3><em>They use it for nutrients</em></h3>
Answer:
As force = tension in string so tension in string is 400N
Explanation:
Answer:
Final velocity, v = 0.28 m/s
Explanation:
Given that,
Mass of the model, 
Speed of the model, 
Mass of another model, 
Initial speed of another model, 
To find,
Final velocity
Solution,
Let V is the final velocity. As both being soft clay, they naturally stick together. It is a case of inelastic collision. Using the conservation of linear momentum to find it as :



V = 0.28 m/s
So, their final velocity is 0.28 m/s. Hence, this is the required solution.
Answer:
I = 0.002593 A = 2.593 mA
Explanation:
Current density = J = (3.00 × 10⁸)r² = Br²
B = (3.00 × 10⁸) (for ease of calculations)
The current through outer section is given by
I = ∫ J dA
The elemental Area for the wire,
dA = 2πr dr
I = ∫ Br² (2πr dr)
I = ∫ 2Bπ r³ dr
I = 2Bπ ∫ r³ dr
I = 2Bπ [r⁴/4] (evaluating this integral from r = 0.900R to r = R]
I = (Bπ/2) [R⁴ - (0.9R)⁴]
I = (Bπ/2) [R⁴ - 0.6561R⁴]
I = (Bπ/2) (0.3439R⁴)
I = (Bπ) (0.17195R⁴)
Recall B = (3.00 × 10⁸)
R = 2.00 mm = 0.002 m
I = (3.00 × 10⁸ × π) [0.17195 × (0.002⁴)]
I = 0.0025929449 A = 0.002593 A = 2.593 mA
Hope this Helps!!!