I think you forgot to upload the picture so I don’t think we can help you... sorry
Answer:
It will take 28.5 minutes
Explanation:
<u>Step 1: </u>Data given
Mass of Cu = 4.50 grams
8.00 A of current are used
Molar mass of Cu = 63.5 g/mol
Step 2: Calculate time needed
Cu2+ →Electricity → Cu
we notice a flow of 2 electrons ⇒ This means the Faraday constant = 2F
Since Molar mass of Cu is 63.5 g/mol
63.5 grams of Cu is deposited by 2*96500 C
4.50 grams of Cu ((2*96500)/63.5) * 4.50 = 13677.17 C
Q = It
13677.17 = 8t*60 seconds
t = 28.5 minutes
Answer: v = 2π2 Kme2 Z / nh
Explanation:
The formula for velocity of an electron in the nth orbit is given as,
v = 2π2 Kme2 Z / nh
v = velocity
K = 1/(4πε0)
m= mass of an electron
e = Charge on an electron
Z= atomic number
h= Planck’s constant
n is a positive integer.
Molar concentration = (numbet of mol Solute)/ ( volume Solution)
1) Finding
the number of the mol solute


Answer:
6.022 x 10²³
Explanation:
The number of atoms = the number of moles x with the Avogadro's number.
(The Avogadro's number is 6.022 x 10²³ atoms / moles)
number of atoms = 1.00 moles x 6.022 x 10²³ atoms / mole
number of atoms = 6.022 x 10²³ atoms
(There is no need to simplify?) = 6.022 x 10²³
(ps. This is my first time doing this question so im sorry if i got it wrong
(つ﹏⊂)