Answer:
the normality of the given solution is 0.0755 N
Explanation:
The computation of the normality of the given solution is shown below:
Here we have to realize the two sodiums ions per carbonate ion i.e.
N = 0.321g Na_2CO_3 × (1mol ÷ 105.99g)×(2eq ÷ 1mol)
= 0.1886eq ÷ 0.2500L
= 0.0755 N
Hence, the normality of the given solution is 0.0755 N
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.
The term "valence electrons" refers to all of the electrons in an atom's outermost shell.
The centre of the atom is where the nucleus is. The nucleus contains protons and neutrons. The electrons travel in a specific circular direction and at a specific distance from the nucleus.
The atom's final shell's electrons take part in chemical reactions and the production of bonds. Both ionic and covalent bonding involve valence electrons. Metals are elements with one, two, or three electrons in their final shell.
These substances become positive ions after losing their electrons. Non-metals are substances with 5, 6, or 7 electrons in the outermost shell. These substances all gain electrons and change into negative ions.
Ionic bonds are those created by the transfer of electrons between metals and non-metals. For instance, ionic bonding allows sodium and chlorine to interact to generate sodium chloride.
To know more about valence electrons here
brainly.com/question/371590
#SPJ4
Explanation:
b I dont really know okau
In a branched chain of amino acids