So elimination method is basically adding the equations and canceling out variables.
-6x + 6y = 6
-6x + 3y = -12
The eaiest way to solve is by multiplying the bottom equation by -1.
-6x + 6y = 6
6x - 3y = 12
Now you add the eqautions.
3y = 18
Divde 3 from both sides.
y = 6
Now plug in 6 into any of the original two equations. Lets use the first one.
-6x + 6(6) = 6
-6x + 36 = 6
Subtract 36 from both sides.
-6x = -30
Divide -6 from both sides.
x = 5
So your solution is (5, 6).
I hope this helps love! :)
9514 1404 393
Answer:
C. 3x² +24
Step-by-step explanation:
Use the given function definitions and simplify.

Price of one citron = 5 units
Price of one fragrant = 5/7 units = 0.71 units
Further explanation:
Let x be the price of one citron and
y be the price of one fragrant
Then according to given statement
10x+7y = 55 Eqn 1
7x+10y = 64 Eqn 2
Multiplying equation 1 by 7

This will be equation 3.
Multiplying equation 2 by 10

This will be equation 4.
Subtracting equation 3 from equation 4

So,
Price of one citron = 5 units
Price of one fragrant = 5/7 units = 0.71 units
Keywords: Linear Equations, Solving system of linear equations
Learn more about linear equations at:
#LearnwithBrainly
Part A
Answer: The common ratio is -2
-----------------------------------
Explanation:
To get the common ratio r, we divide any term by the previous one
One example:
r = common ratio
r = (second term)/(first term)
r = (-2)/(1)
r = -2
Another example:
r = common ratio
r = (third term)/(second term)
r = (4)/(-2)
r = -2
and we get the same common ratio every time
Side Note: each term is multiplied by -2 to get the next term
============================================================
Part B
Answer:
The rule for the sequence is
a(n) = (-2)^(n-1)
where n starts at n = 1
-----------------------------------
Explanation:
Recall that any geometric sequence has the nth term
a(n) = a*(r)^(n-1)
where the 'a' on the right side is the first term and r is the common ratio
The first term given to use is a = 1 and the common ratio found in part A above was r = -2
So,
a(n) = a*(r)^(n-1)
a(n) = 1*(-2)^(n-1)
a(n) = (-2)^(n-1)
============================================================
Part C
Answer: The next three terms are 16, -32, 64
-----------------------------------
Explanation:
We can simply multiply each previous term by -2 to get the next term. Do this three times to generate the next three terms
-8*(-2) = 16
16*(-2) = -32
-32*(-2) = 64
showing that the next three terms are 16, -32, and 64
An alternative is to use the formula found in part B
Plug in n = 5 to find the fifth term
a(n) = (-2)^(n-1)
a(5) = (-2)^(5-1)
a(5) = (-2)^(4)
a(5) = 16 .... which matches with what we got earlier
Then plug in n = 6
a(n) = (-2)^(n-1)
a(6) = (-2)^(6-1)
a(6) = (-2)^(5)
a(6) = -32 .... which matches with what we got earlier
Then plug in n = 7
a(n) = (-2)^(n-1)
a(7) = (-2)^(7-1)
a(7) = (-2)^(6)
a(7) = 64 .... which matches with what we got earlier
while the second method takes a bit more work, its handy for when you want to find terms beyond the given sequence (eg: the 28th term)
A rational number is a number that can be written as a fraction or "ratio".
It includes the set of integers because all of them have a denominator of 1. A rational number can take on the form of

where b ≠ 0. Terminating and repeating decimals are rational numbers because they too can be written as a ratio; for example, 0.3 =

or 0.3333... =

.